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ABSTRACT

Recent advances in machine learning have demonstrated the potential of large-scale models to
exhibit broad generalization capabilities across diverse tasks. However, the evaluation of these
models remains fragmented, with different benchmarks focusing on specific modalities or capabilities.
We present Multinet, a comprehensive benchmark designed to evaluate truly generalist models
across vision, language, and action domains. Multinet consolidates diverse, high-quality datasets
including OBELICS, COYO-700M, and OpenX-Embodiment, establishing standardized evaluation
protocols for assessing both the action capabilities of Vision-Language Models (VLMs) and the
multimodal understanding of Vision-Language-Action Models (VLAs). Our benchmark includes
carefully curated training data spanning vision-language association (800M+ image-text pairs),
language understanding (1.3T tokens), and control tasks (35+ TB of robotics and RL data). We
provide evaluation protocols across multiple dimensions, including image captioning, visual question
answering, commonsense reasoning, and robotic control. Additionally, we open-source a toolkit that
standardizes the challenging process of obtaining and utilizing reinforcement learning and robotics
data from various sources. Through systematic evaluation of state-of-the-art models, we aim to
demonstrate significant gaps in current approaches: VLMs struggle with control tasks while VLAs
show limited capabilities in pure vision-language understanding. These findings will highlight the
need for more genuinely generalist models. Multinet serves as both a comprehensive evaluation
framework and a foundation for developing the next generation of truly generalist AI systems.

1 Introduction

Motivations

Recent advances in machine learning have demonstrated the potential of large-scale models to exhibit broad generaliza-
tion capabilities across diverse tasks. A particularly promising direction emerged with DeepMind’s Gato [42], which
provided the first glimpse of a truly generalist model capable of performing hundreds of different tasks across multiple
domains. However, the datasets and model used to train Gato remain closed-source, limiting the research community’s
ability to build upon and extend this work.

Concurrent developments in Vision-Language-Action (VLA) models have shown impressive capabilities in grounding
real-world actions with vision and natural langueg [25, 51]. These models can interpret visual scenes, understand
language commands, and generate appropriate control actions. However, current VLA models are primarily focused
on narrow domains like robotic manipulation, and are not proven to perform well on complex vision-language
understanding tasks. This limitation could stem partly from their training data, which typically emphasizes a specific
subset of capabilities rather than true generalist behavior.

Building genuinely generalist models requires training on diverse datasets that span multiple modalities and task types.
Such models must excel not only at individual modalities (vision, language, or control) but also at tasks that require
seamless integration across modalities - a requirement that better reflects real-world scenarios. Currently, there exists
no large-scale, open-source dataset specifically designed for training and evaluating such generalist models. This gap
motivated the development of Multinet.
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Contributions

In this paper, we present Multinet, a comprehensive benchmark for developing and evaluating generalist action models.
Our contributions include:

• The largest open-source generalist dataset, consolidating diverse modalities and tasks suitable for pre-training,
fine-tuning, and evaluation

• A novel benchmark for assessing state-of-the-art Vision-Language Models (VLMs) and Vision-Language-
Action Models (VLAs)

• A detailed analysis of the constituent datasets’ validity and utility for generalist objectives
• An open-source software toolkit that facilitates dataset access and standardizes control data from various

sources into a common TensorFlow format

Through Multinet, we aim to accelerate research in generalist models by providing the community with the necessary
tools and benchmarks to develop and evaluate truly general-purpose AI systems. Our benchmark enables systematic
comparison of different approaches and provides insights into the challenges and opportunities in building models that
can seamlessly operate across multiple modalities and tasks.

2 Related Work

Recent advances in machine learning have produced several promising directions toward generalist AI systems. We
organize our discussion of related work into three main categories: generalist agents, vision-language-action models,
and existing benchmarks.

2.1 Generalist Agents

DeepMind’s Gato [42] represented a significant milestone as the first truly multi-modal, multi-task, multi-embodiment
agent. Operating with a single neural network and fixed weights, Gato demonstrated capabilities spanning Atari
gameplay, image captioning, conversational interaction, and real-world robotic manipulation. The agent dynamically
selects appropriate output modalities (text, joint torques, button presses, or other tokens) based on context. However,
both the model and the majority of its training datasets remain closed-source, limiting its impact on the broader research
community.

2.2 Vision-Language-Action Models

Recent work has produced several notable vision-language-action (VLA) models, including Octo [51] and OpenVLA
[25]. These models demonstrate impressive capabilities in grounding language instructions in robotic control actions
through either pre-training from scratch or fine-tuning existing models. However, their training focuses exclusively
on vision-language-grounded control tasks, neglecting pure vision-language understanding or generation tasks. This
specialization limits their ability to serve as truly generalist models capable of operating across the full spectrum of
modalities.

2.3 Benchmarks and Evaluation Frameworks

Existing benchmarks in the field can be categorized into control-focused, vision-language focused, and robotics-specific
evaluations.

Control Benchmarks: RL Unplugged [18] provides a comprehensive suite of offline reinforcement learning bench-
marks, spanning domains from Atari games to DM Control Suite tasks. It standardizes environments, datasets, and
evaluation protocols to enhance reproducibility in offline RL research. Similarly, D4RL [14] offers over 40 standardized
environments and datasets for offline RL, covering robotic manipulation, navigation, and autonomous driving tasks. The
robotics community has developed numerous specialized benchmarks, particularly focusing on imitation learning and
behavior cloning. THE COLOSSEUM[40] provides a systematic evaluation framework for robotic manipulation across
14 environmental perturbations, while FactorWorld[56] and KitchenShift[57] examine generalization across various en-
vironmental factors. Several task-specific benchmarks have emerged: RLBench[24] offers 100 simulated manipulation
tasks, RAVENS[23] focuses on vision-based manipulation, and FurnitureBench[22] addresses long-horizon complex
manipulation in real-world settings. Recent additions include LIBERO[32] for lifelong robot learning, FMB[35] for
generalizable manipulation, DUDE[53] for document manipulation, and ProcTHOR[11] for procedurally generated
embodied AI tasks.
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Vision-Language Benchmarks: The evolution of multimodal evaluation has progressed significantly from single-task
benchmarks like VQA[17], OK-VQA[36], and MSCOCO[31] to more comprehensive frameworks. MultiBench [30]
presents a unified evaluation framework spanning 15 datasets, 10 modalities, and 20 prediction tasks across 6 research
areas. MMLU [21] evaluates language model capabilities across 57 academic subjects, while MMMU[63] extends
this to college-level multimodal understanding across technical disciplines. Recent developments include specialized
benchmarks like MathVista[34] for mathematical reasoning and GAIA[37] for fundamental reasoning abilities, as well
as more holistic evaluations through LAMM[59], LVLM-eHub[58], SEED[29], and MM-Vet[62]. LiveBench [55]
specifically addresses test set contamination through continuously updated evaluation data.

While these benchmarks excel in their respective domains, they remain specialized to particular modalities or task types.
Multinet addresses this limitation by providing a diverse collection of datasets specifically designed to evaluate and
advance truly generalist models. Our benchmark enables the development of systems with strong capabilities across
vision-language association, language understanding and generation, and reward-based action trajectories in varied
environments. Additionally, Multinet serves as a comprehensive evaluation framework for current VLMs and VLAs,
highlighting areas for improvement in the development of next-generation generalist models.

3 Coverage

3.1 Datasets

3.1.1 For Training

Vision-Language and Language

OBELICS OBELICS [27] is an open web-scale filtered dataset of interleaved image-text documents extracted from
Common Crawl [1]. It comprises 141 million web pages, 353 million associated images, and 115 billion text tokens.
The interleaved nature of the documents provides richer context compared to simple image-text pairs. The dataset
occupies 666 GB in arrow format and 377 GB in Parquet format, and currently includes only training data.

COYO-700M COYO-700M [2] contains 747 million pairs of alt-text and associated images harvested from HTML
documents. The dataset was curated from approximately 10 billion initial pairs collected from CommonCrawl between
October 2020 and August 2021. It employs minimal filtering, resulting in a "noisier" dataset that can potentially
improve model robustness while providing challenging evaluation scenarios.

MS-COCO Captions MS-COCO Captions [31] is a large-scale object detection, segmentation, and captioning
dataset containing 330,000 images with 5 captions each, totaling 1.5 million object instances. The dataset’s high-quality
annotations make it particularly valuable for training and evaluating vision understanding tasks.

Conceptual Captions Conceptual Captions [47] consists of 3.3 million web-harvested images with filtered descrip-
tions derived from HTML alt-text attributes. The dataset includes 3,318,333 image-URL/caption pairs for training and
15,840 pairs for validation. Unlike COYO-700M, it undergoes more rigorous filtering to ensure higher data quality.

A-OKVQA A-OKVQA [46], the successor to OKVQA [36], contains 24,903 question/answer/rationale triplets
requiring broad commonsense and world knowledge. The dataset is split into 17.1K/1.1K/6.7K for train, validation, and
test. Questions cannot be answered by simply querying a knowledge base, making it particularly valuable for evaluating
sophisticated reasoning capabilities.

VQA-V2 VQA-V2 [17] provides open-ended questions about images that require understanding of vision, language,
and commonsense knowledge. The dataset includes 265,000 images with at least three questions per image, ten ground
truth answers per question, and three plausible answers per question.

DataComp-1B DataComp-1B [15] consists of 1.4 billion image-text pairs curated from an initial pool of 12.8 billion
pairs. Despite being smaller than alternatives like LAION-2B [44], it achieves better performance with fewer resources,
demonstrating 79.2% zero-shot accuracy on ImageNet [12] while using 9x less compute.

Fineweb-edu Fineweb-edu [38] contains 1.3T tokens of educational content filtered from the FineWeb dataset using
an educational quality classifier trained on LLama3-70B-Instruct [13] annotations. The dataset demonstrates superior
performance on standard benchmarks compared to larger, unfiltered alternatives.
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Reinforcement Learning and Robotics

DM Lab DM Lab [5] provides frames from the DeepMind Lab environment annotated with agent-object distances.
The dataset contains 360x480 color images across 6 classes (combinations of close, far, very far and positive reward,
negative reward). This 1.8 TB dataset is particularly valuable for training models to reason about spatial relationships
and depth perception in 3D environments, making it crucial for robotics and augmented reality applications.

ALE Atari The Arcade Learning Environment (ALE) provides 57 Atari 2600 game environments for AI agent
development. The dataset version included in Multinet contains 500,000 interactions per game generated by JAT [16],
where dedicated agents were trained for 2 billion steps using asynchronous PPO [45]. The complete dataset occupies
66 GB.

BabyAI BabyAI [7] is a research platform comprising 19 levels of increasing difficulty, designed to investigate
grounded language learning with humans in the loop. The platform teaches agents a combinatorially rich subset of
English and includes a hand-crafted bot that simulates a human teacher. Our version contains 100,000 episodes across
39 available settings collected by JAT [16], totaling 148 GB.

MuJoCo The MuJoCo [52] benchmark suite contains 11 continuous control tasks of varying complexity. The dataset
version included in Multinet includes 10,000 episodes per environment collected by JAT[16], generated by agents
trained using asynchronous PPO [45] from Sample Factory [39]. These agents achieved scores meeting or exceeding
current standards. The complete dataset occupies 33 GB.

DM Control Suite The DeepMind Control Suite [50] provides standardized continuous control environments
powered by the MuJoCo physics engine. It includes diverse tasks ranging from simple (Pendulum, Cart-pole) to
complex (Humanoid, Manipulator), with interpretable rewards. The dataset occupies 52 GB and is particularly valuable
for training on simulated motor-control problems.

V-D4RL V-D4RL [33] is the first publicly available benchmark for continuous control from visual observations
of DMControl Suite tasks featuring diverse behavioral policies. The 62 GB dataset specifically tests robustness to
distractions, generalization across dynamics, and offline reinforcement learning at scale.

Meta-World Meta-World’s MT50 benchmark [61] provides 50 diverse robot manipulation tasks. The dataset version
included in Multinet includes a 15 GB dataset collected by JAT[16], and contains 10,000 episodes per environment
(limited to 100 timesteps) generated by task-specific trained agents.

Procgen Procgen [9] is OpenAI’s suite of 16 procedurally generated game-like environments designed to benchmark
efficiency and generalization in RL. With diversity comparable to ALE, these environments require robust policies that
avoid overfitting to narrow state spaces. The dataset occupies 739 GB.

OpenX-Embodiment OpenX-Embodiment [10] is currently the largest open-source real robot dataset, containing
over 1M trajectories from 22 robot embodiments. For Multinet v0.1, we utilize 53 of the 72 available datasets, stored in
the RLDS [41] format which accommodates various action spaces and input modalities. The training splits of these 53
datasets total 32 TB. Dataset selection involved careful curation based on robot morphology, gripper specifications,
action spaces, and sensor configurations.

LocoMuJoCo LocoMuJoCo [3] is an open-source imitation learning benchmark focused on locomotion. It includes
diverse environments (quadrupeds, bipeds, and musculoskeletal human models) with comprehensive datasets including
real noisy motion capture data and ground truth expert data. Our version uses the "perfect dataset" containing ground
truth states and actions from expert policies, occupying 690 MB.

3.1.2 For Evaluation

Beyond the validation and test splits available in our training datasets, we include several datasets specifically for
evaluation purposes:

Flickr30k Flickr30k [60] contains 31,000 images from Flickr, each paired with five human-annotated descriptive
sentences. The dataset includes rich annotations like coreference chains and bounding boxes, making it particularly
valuable for evaluating sentence-based image description and grounded language understanding.
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TextVQA TextVQA [48] evaluates models’ ability to read and reason about text within images. It contains 45,336
questions across 28,408 images from OpenImages [26], specifically testing models’ capability to incorporate text as a
modality for question answering.

VizWiz VizWiz [19] provides a collection of images taken by blind individuals along with associated questions,
presenting unique challenges due to poor image quality and conversational question formats. This dataset tests model
robustness in real-world assistive technology scenarios where questions may not always be answerable.

WinoGAVil WinoGAViL [6] tests vision-and-language commonsense reasoning abilities by requiring models to
identify associations beyond simple visual recognition. It provides both zero-shot and supervised evaluation settings,
challenging models with tasks requiring general knowledge and abstraction capabilities.

ImageNet-R ImageNet-R [20] contains artistic renditions of 200 ImageNet [12] classes, including art, cartoons,
graffiti, embroidery, and other stylized representations. The dataset evaluates models’ ability to generalize beyond
standard photographic images to diverse visual representations.

ObjectNet ObjectNet [4] is a real-world test set for object recognition featuring random backgrounds, rotations, and
viewpoints. Without an associated training set, it specifically tests generalization capabilities by controlling for common
dataset biases and presenting objects in unusual poses and cluttered scenes.

HellaSwag HellaSwag [64] comprises 70,000 multiple-choice questions designed to evaluate commonsense natural
language inference. The dataset features adversarially generated endings that are difficult for AI but easy for humans,
who achieve over 95% accuracy.

WinoGrande WinoGrande [43] contains 44,000 examples inspired by the Winograd Schema Challenge [28]. Each
example presents a sentence with an ambiguous pronoun that requires commonsense reasoning and world knowledge to
resolve correctly.

ARC The AI2 Reasoning Challenge [8] provides multiple-choice questions from grade 3-9 science exams, split
into Easy and Challenge sets. The Challenge Set specifically tests advanced reasoning capabilities that many current
algorithms struggle with.

CommonsenseQA CommonsenseQA [49] contains 12,247 multiple-choice questions, each with one correct answer
and four distractors. The dataset evaluates models’ ability to utilize general world knowledge beyond specific contexts.

MMLU The Massive Multitask Language Understanding benchmark [21] evaluates language models across 57
subjects through approximately 16,000 multiple-choice questions. It tests world knowledge and problem-solving
abilities in zero-shot and few-shot settings across diverse academic disciplines.

3.2 Analysis

Multinet consists of datasets across several categories, encompassing a diverse set of modalities and tasks, thus testing a
potential generalist model in many different ways. All control datasets are simulated environments except for the
OpenX-Embodiment collection which contains data from robots used in the real-world.

4 The Multinet Benchmark

4.1 Motivation

While existing benchmarks excel at evaluating specific capabilities and modalities, there remains a notable gap in
holistic evaluation frameworks that can assess both the action capabilities of Vision-Language Models (VLMs) and the
multimodal understanding of Vision-Language-Action Models (VLAs). Multinet addresses this gap by providing a
comprehensive benchmark that spans vision-language, language, and control tasks. Our work consolidates diverse,
high-quality datasets and establishes standardized evaluation metrics to enable systematic comparison of state-of-the-art
models.
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Dataset Task/Data type Modality

OBELICS Interleaved Image-Text Vision-Language
COYO-700M Image-Text pairs Vision-Language
MS COCO Object detection, segmentation, key-

point detection, captioning
Vision-Language

Conceptual Captions Image Captioning Vision-Language
A-OKVQA Visual Question Answering Vision-Language
VQA-v2 Visual Question Answering Vision-Language
Datacomp-1B Image-Text pairs Vision-Language
Fineweb-edu High quality text corpus Language

Table 1: Training, fine-tuning, and evaluation datasets for vision-language and language tasks

Vision-Language

29%

Language

13%

Control

58%

Figure 1: Distribution of datasets across modalities in Multinet. Control represents the largest portion (58%) due to the
extensive OpenX-Embodiment collection, followed by Vision-Language (29%) and Language (13%) datasets.

4.2 Evaluation Metrics

We employ several complementary metrics to evaluate model performance across different modalities and tasks:

CIDEr The Consensus-based Image Description Evaluation (CIDEr) metric [54] evaluates image captioning quality
by comparing generated captions to reference captions using TF-IDF-weighted n-grams. For a candidate caption ci and
reference captions Si, the CIDEr score for n-grams of length n is calculated as:

CIDErn(ci, Si) =

 1

m

∑
j

sim(ci, sij)

 (1)

where similarity is computed as:

sim(ci, sij) =
gn(ci) · gn(sij)

||gn(ci)|| · ||gn(sij)||
(2)

In the equation above gn(ci) is the TF-IDF vector for a candidate description and gn(sij) is the TF-IDF vector for the
reference sentence j of image i. The final CIDEr score averages across different n-gram lengths:

CIDEr(ci, Si) =
1

N

N∑
n

CIDErn(ci, Si) (3)

VQA Accuracy This metric evaluates visual question answering performance through exact string matching between
predicted and reference answers:
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VQA accuracy =

∑N
i=1 min

(
1, number of annotators who agree with model’s answer

3

)
N

Recall@K For image-text retrieval tasks, Recall@K measures the proportion of relevant items retrieved within the
top K results:

Recall@K =
Number of relevant items retrieved within top K

Total number of relevant items

Accuracy For commonsense reasoning and text understanding tasks, we use standard classification accuracy:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

× 100 (4)

Mean Squared Error For evaluating action prediction on offline robotics trajectories, we employ Mean Squared
Error:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5)

MSE is particularly suitable for this task due to its non-negativity, sensitivity to large errors, and incorporation of both
bias and variance components. When evaluating models on the OpenX dataset, we use MSE to measure the accuracy of
predicted actions given observation states, image observations, and language instructions at each timestep. This metric
is especially valuable for offline evaluation where direct robot deployment is not possible.

Metric Evaluation Categories

CIDEr
• Image Captioning
• Image-based Text Retrieval

VQA Accuracy Visual Question Answering

Recall@K
• Image Understanding
• Text-based Image Retrieval

Accuracy
• Visual Question Answering
• Commonsense Reasoning
• Text Understanding

Mean Squared Error
• Reinforcement Learning
• Robotics

Table 2: Metrics used in the Multinet benchmark and their corresponding evaluation categories. Each metric is designed
to assess specific aspects of model performance across different modalities and tasks.

4.3 Benchmark Evaluation Protocol

The first release of Multinet establishes evaluation protocols for state-of-the-art models including GPT-4, JAT, and
OpenVLA on the OpenX-Embodiment datasets [10]. Our evaluation strategy adapts to the varying availability of dataset
splits:
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Pre-existing Test Splits For datasets with established test splits, we conduct evaluations directly on these splits,
maintaining consistency with previous benchmarking efforts.

Validation Split Usage When test splits are unavailable but validation splits exist, we use the validation splits for
evaluation to avoid potential training data contamination.

Custom Split Creation For datasets containing only training data, we create evaluation splits by:

• Reserving approximately 20% of the dataset shards for evaluation

• Ensuring each shard contains 512 timesteps of data

• Extending the evaluation split boundary when necessary to include complete episodes (i.e., if an episode
extends beyond the 20% boundary, we include all timesteps until episode completion)

This protocol ensures comprehensive evaluation while maintaining episode integrity and preventing the artificial
truncation of behavioral sequences.

5 Importance of Multinet

The development and release of Multinet represents a significant step toward advancing generalist AI systems. Its
importance spans several key dimensions:

Advancing Generalist Foundation Models Multinet establishes a comprehensive benchmark for evaluating truly
generalist models that can operate across multiple modalities, tasks, and environments. Our initial findings [] demonstrate
a significant capability gap in current state-of-the-art models: while VLMs and VLAs excel in their primary domains,
they struggle to maintain consistent performance across a diverse set of real-world robotics tasks that they have not
been exposed to before.

Enabling Next-Generation VLA Models Current Vision-Language-Action models typically excel at vision-language-
grounded actions but may underperform in pure vision-language or language tasks. Multinet provides pre-training scale
data across all these modalities, enabling the development of models that achieve state-of-the-art performance across all
constituent tasks, not just their primary domain. As future versions expand the dataset, these capabilities will only grow
stronger.

Comprehensive Evaluation of Robotics Foundation Models Traditional evaluations of robotics foundation models
often focus narrowly on control tasks, neglecting to assess their capabilities in understanding and generating content
across individual modalities. Multinet’s comprehensive evaluation framework highlights opportunities to enhance these
models’ fundamental capabilities, paving the way for more powerful, truly generalist robotic systems.

Standardizing Robotics Data A significant contribution of this work is our open-source toolkit for standardizing
robotics and reinforcement learning data. Many existing datasets suffer from outdated formats, poor maintenance, and
accessibility issues. Our toolkit addresses these challenges by:

• Providing stable access methods for diverse RL and robotics datasets

• Converting various data formats to a unified TensorFlow dataset format

• Enabling easy local storage and usage for training, fine-tuning, and evaluation

Fostering Advanced Evaluation Methods While we currently use Mean Squared Error between predicted and
ground-truth actions to evaluate performance on the OpenX-Embodiment dataset, we acknowledge this metric’s
limitations. By highlighting the need for more sophisticated evaluation methods, we aim to encourage:

• Development of more advanced simulation environments

• Creation of evaluation methods that better approximate real-world performance

• Innovation in offline RL and robotics task assessment

Through these contributions, Multinet not only provides immediate value for evaluating and developing generalist AI
systems but also highlights critical areas for future research and development in the field.
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6 Future Work

The release of Multinet marks an important first step toward a new paradigm of foundation models, but significant
opportunities remain for expansion and improvement. Our vision for future iterations of Multinet encompasses several
ambitious directions.

A key priority is deepening our understanding of how control-task training affects model capabilities. While current
VLAs show promising results on control tasks, we plan to systematically evaluate their performance on pure vision-
language and language tasks to assess whether fine-tuning or co-fine-tuning on control tasks compromises their
capabilities in individual modalities. This investigation will provide crucial insights into the trade-offs involved in
developing truly generalist models.

We also aim to broaden our evaluation scope beyond the OpenX-Embodiment dataset. By incorporating the diverse
control tasks described in this paper, we can better understand how VLAs and generalist models perform on completely
out-of-distribution data. This expansion will help identify both the strengths and limitations of current approaches while
suggesting directions for improvement.

While our current profiling efforts focus on zero-shot performance, future work will explore few-shot learning and
fine-tuning scenarios. Of particular interest is the potential transfer of VLA capabilities to novel domains. For instance,
we are exploring how these models might be adapted to software environments, potentially enabling more capable
digital agents by leveraging insights from embodied learning.

Finally, we envision transforming Multinet from its current offline form into an online benchmark. This evolution may
include the development of simulation environments for both 2D and 3D control tasks, enabling more dynamic and
interactive evaluation of model capabilities. Such an extension would provide richer insights into model behavior and
better approximate real-world deployment scenarios.

Through these future developments, we aim to establish Multinet as a comprehensive and evolving platform for
advancing the field of generalist AI systems. By providing increasingly sophisticated tools and benchmarks, we hope to
accelerate progress toward more capable and versatile artificial intelligence.
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